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TEXTBOOK MULTIGRID EFFICIENCY FOR THE INCOMPRESSIBLE
NAVIER-STOKES EQUATIONS: HIGH REYNOLDS NUMBER WAKES AND

BOUNDARY LAYERS

JAMES L. THOMAS∗, BORIS DISKIN† , AND ACHI BRANDT‡

Abstract. Textbook multigrid efficiencies for high Reynolds number simulations based on the incom-
pressible Navier-Stokes equations are attained for a model problem of flow past a finite flat plate. Elements
of the Full Approximation Scheme multigrid algorithm, including distributed relaxation, defect correction,
and boundary treatment, are presented for the three main physical aspects encountered: entering flow, wake
flow, and boundary layer flow. Textbook efficiencies, i.e., reduction of algebraic errors below discretization
errors in one full multigrid cycle, are attained for second order accurate simulations at a laminar Reynolds
number of 10,000.

Key words. incompressible Navier-Stokes equations, textbook multigrid efficiency, distributive relax-
ation, defect-correction iteration
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1. Introduction. In the mid-70’s, Beam and Warming [1] presented an implicit scheme for the com-
pressible Navier-Stokes equations which had a significant impact on the field known as Computational Fluid
Dynamics (CFD). The method they presented, based upon a spatial factoring of the implicit equations in
delta form, used alternating tridiagonal line relaxations to solve high Reynolds number viscous simulations.
This method proved to be much more efficient than other approaches. The basic methodology is still widely
used and has been extended to very general applications across the Mach number range, forming the foun-
dation for many general purpose solvers worldwide, among them ARC3D [8] and CFL3D [7] at the NASA
Ames and Langley Research Centers, respectively. This seminal contribution of Beam and Warming was a
critical building block to the acceptance of CFD using Reynolds-Averaged Navier-Stokes (RANS) solvers by
the aircraft industry. Today, computational methods for the cruise shapes of transport aircraft, designed
to minimize viscous and shock wave losses at transonic speeds, are reasonably well in hand. Simulations of
off-design performance, involving unsteady separated and vortical flows with stronger shock waves, require
significantly greater computing resources; this requirement limits further inroads into the design process with
CFD.

As a typical example of current RANS capability, the CFL3D code is based on the spatially-factored
scheme of Beam and Warming and uses multigrid to accelerate convergence to steady state; using alternating-
line implicit block 5x5 matrix solutions, approximately 200 updates are required to converge the lift and
drag to one percent of their final values for wing-body geometries near transonic cruise conditions. Complex
geometry and complex physics simulations generally require many more residual evaluations to converge, and
sometimes convergence cannot be attained. Now, it is well-known for fully elliptic problems that solutions
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can be attained using a full multigrid (FMG) process in far fewer, on the order of 2-4, residual evaluations.
Optimal convergence is defined by Brandt [2, 3, 4] as textbook multigrid efficiency (TME), meaning the
solutions to the governing system of equations are attained in a computational work which is a small (less
than 10) multiple of the operation count in the discretized system of equations. Thus, there is a potential
gain of more than two orders of magnitude in operation count reduction if TME could be attained for the
RANS equation sets. The principal difficulty stems from the fact that the RANS equation sets are a system
of coupled nonlinear equations which are not, even for subsonic Mach numbers, fully elliptic, but contain
hyperbolic factors. Brandt [4] has summarized the progress and remaining barriers to achieving TME for
the equations of fluid dynamics.

The purpose of this paper is to present a multigrid method which attains textbook efficiencies for one
of the most basic simulations encountered in fluid dynamics – the incompressible viscous flow past a finite
flat plate at high Reynolds number. The flow, although relatively simple, contains several basic elements of
the barriers to be overcome in extending textbook efficiencies to the compressible RANS equations, namely
entering flows, far wake flows, and boundary layers. A central element of the multigrid method presented
is the decomposition through distributed relaxation [3] of the the system of equations into separate, usually
scalar, factors that can be treated optimally, i.e., through marching for the hyperbolic factors and through
multigrid for the elliptic factors. Although we restrict ourselves to incompressible flow, the procedures carry
over directly to the compressible flow case, at least for subcritical flow [3, 4, 10].

2. Governing Equations. The equations considered here are the steady, incompressible Navier-Stokes
equations in nonconservative form, i.e., two momentum equations and the continuity equation,

r(q) ≡ Lq = 0, (2.1)

expressed in terms of primitive (velocities and pressure) variables q = (u, v, p)T , where

L =




Qν 0 ∂x

0 Qν ∂y

∂x ∂y 0


 . (2.2)

The operator Qν represents convection and diffusion effects as

Qν ≡ Q− ν∆, (2.3)

where Q = u∂x + v∂y, the Laplacian operator is ∆ = ∂xx + ∂yy, and the kinematic viscosity is ν = 1/Re,
where Re is Reynolds number. Extensions to conservation law form for the momentum equations and to
inclusion of the energy equation are possible, but not considered here.

The determinant of the matrix of operators,

|L| = −Qν ∆, (2.4)

corresponds to an elliptic factor, represented by the Laplacian, and a convection-diffusion factor, gener-
ally recognized as the convection and diffusion of vorticity along a streamline. For high Reynolds number
simulations, there are two important scales: the viscous scales in the thin viscous layers near bodies and
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in their wakes and the inviscid scales, which predominate over most of the flow field. For the numerical
calculations below, the thin-layer approximation, in which only the viscous terms associated with variations
in the coordinate normal to the body are retained, is used.

3. Multigrid Method. The present approach uses a full multigrid (FMG) algorithm [2, 3], proceeding
from the coarsest grid to finer grids. The solution is interpolated from the current grid to the next finer
grid. The goal of the algorithm is fast reduction of the algebraic errors below the discretization errors on a
given grid, before moving to the next finer grid. The algebraic errors of the discrete equations on a given
grid are reduced through a Full Approximation Scheme (FAS) [3] multigrid scheme, in which corrections to
the nonlinear equations are obtained from coarser grid solutions. The scheme is described below by means
of a two-grid notation, in which the fine grid is denoted by superscript h and the coarse grid by superscript
2h.

The steady-state residual operator to be solved on the fine grid is the discrete version of Eq. (2.1),

rh(qh) = 0. (3.1)

The initial fine-grid approximation qh is prolonged from the coarse-grid solution q2h, as

qh ← P q2h. (3.2)

where P denotes a prolongation operator. After relaxation(s) of the fine-grid operator to obtain an approx-
imation q̃h, the coarse-grid equation at level 2h to be solved for a correction to the fine grid is

r2h(q2h) = r2h(Rq̃h)−Rrh(q̃h), (3.3)

where R denotes a restriction operator for transfer of information to the coarser grid and the tilde superscript
denotes a most recently available value. This coarse grid equation is then solved by some iterative method
(or directly if the grid is coarse enough). The correction from the coarse grid (grid 2h) is prolonged to the
finer grid as

q̃h ← q̃h + P(q2h −Rq̃h). (3.4)

The restrictions R used here are volume-weighted for the continuity equations; for the momentum equations,
the coarser cell values are found by volume-weighted restrictions in the direction parallel to the cell interface
along with full-weighted restrictions in the orthogonal direction, i.e., for the y−momentum equation, volume-
weighted horizontally and full-weighted vertically. The prolongations P are bicubic interpolations from
coarser meshes for both the solution and the correction , although results with linear interpolations were
nearly identical. The FAS cycle described above is used extensively in current Euler and Navier-Stokes
solvers. The algorithm is critically dependent on the choice of relaxation operator; distributed relaxation is
used here as described subsequently.

The coarse-grid equations are themselves solved with γ cycles of the algorithm applied recursively, where
γ = 1 would correspond to a V-cycle and γ = 2 to a W-cycle; the number of relaxations on the downward
and upward legs of the cycle are denoted as (ν1, ν2). We use here (ν1, ν2) = (2, 1) and a variant of the
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Fig. 3.1. Schematic of the FV-cycle for 4-level multigrid where ν0 denotes the number of relaxations on the coarsest mesh

(Ω8h).

V-cycle, termed an FV-cycle, in which the initial approximation to the correction on the 2h grid is obtained
through a FMG process. The cycle is sketched in Fig. 3.1; the amount of additional computational work
compared to a standard V-cycle is small, in the ratio of 8/7 in the limit of an infinite number of levels in two
dimensions. For the simulations here, six levels were used wherever possible. The notation FMG-n denotes
an FMG cycle with n FV(2,1) cycles at each level.

4. Distributed Relaxation. Away from boundaries, the correction δq to the current approximation
q, introduced at the stage of distributed relaxation, [2, 3] is calculated from

L δq = −r(q), (4.1)

where L is a principal linearization of L, in which the coefficients u and v in Eq. (2.3) are evaluated from
the current approximation and fixed throughout the relaxation. Note this is not a Newton linearization;
only the principal terms at the viscous and inviscid scales are retained. The distributed relaxation method
replaces δq by Mδw so that the resulting matrix LM becomes a diagonal or lower triangular matrix, as

LM δw = −r(q). (4.2)

The diagonal elements of LM are composed ideally of the separate factors of the determinant of the matrix
L and represent the elliptic or hyperbolic features of the equation. For incompressible flow, the distribution
matrix M can take on a particularly simple form, as determined by the cofactors of the third row of L

divided by their common factor, as

M =




1 0 −∂x

0 1 −∂y

0 0 Qν


 , (4.3)
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yielding

LM =




Qν 0 0
0 Qν 0
∂x ∂x −∆


 . (4.4)

The determinant of the operator matrix LM,

|LM| = −Q2
ν ∆, (4.5)

corresponds to an elliptic factor and two convection-diffusion factors; the additional term over Eq. (2.4), Qν ,
indicates that as a set of new variables, δw would generally need additional boundary conditions all around
the boundary (or, just at inflow in the case ν = 0). Brandt termed the variables δw as “ghost variables,”
since they need not explicitly appear in the calculations; here, they do appear in the calculations, although,
as with the original intent, the boundary conditions are derived from the original primitive variables. The
equations to solve for the ghost variables are given explicitly as

Qνδw1 = −r1,

Qνδw2 = −r2,

∆ δw3 = +r3 + ∂xδw1 + ∂yδw2.

(4.6)

Near boundaries, the general approach, [3, 4] would be to relax the governing equations directly, since
the equations do not necessarily decouple near boundaries as they do in the interior of the domain. One
can make more general, but possibly slowly converging, relaxations, such as Kaczmarcz relaxation, in this
region. This will not affect the overall complexity, because the number of boundary points is negligible in
comparison to the number of interior points. Here, however, we use an approach which applies the interior
distributive relaxation operator also at the boundaries, inferring boundary conditions for the ghost variables
based on the boundary conditions of the governing equations. The cost is that the correction equations,
Eq. (4.6), no longer assume a triangular form, requiring a block matrix solution at the boundaries rather
than the scalar solutions attained away from the boundary. Assuming linearized flow, the appropriate ghost
variable boundary conditions at the differential level are derived for inviscid inflow and outflow in Appendix
I and tangency in Appendix II . These boundary conditions are implemented discretely at the corresponding
boundaries. At the no-slip boundary, the corresponding discrete boundary conditions for the ghost variables
are constructed in Appendix III. The procedure is effective for the simulations considered here; details are
given in subsequent sections.

5. Defect Correction Relaxation. Since Eq. (4.2) is written in delta form, it is natural to consider
defect correction for the update, namely a lower-order discretization of the left side of Eq. (4.6) in order
to simplify the construction and reduce the bandwidth of the implicit operator. Here, we use a first-order
upwind discretization for the convective part of the convection-diffusion operator, Qν , in Eq. (4.6). The
distributed relaxation operator can thus be written as

[LM]d δw = −rt, (5.1)
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Fig. 6.1. Variable description for a grid of JxK ≡ NxxNy points.

where the subscripts t and d denote some desired “target” and “driver” schemes on the right and left sides,
respectively, of the equation.

For hyperbolic equations, the initial convergence of defect correction may be slow for certain, not nec-
essarily high, frequencies [9, 10, 6]. For a target second-order upwind-biased discretization corresponding
to κ = 0, defined subsequently, the asymptotic convergence rate is approximately 0.5 per defect-correction
iteration. Thus, it is well-matched with the convergence rate of 0.5 per relaxation expected for the elliptic
parts of the operator with Gauss-Seidel relaxation.

Defect correction is implemented in the multigrid algorithm as follows: any discrete evaluations of
the residuals of Eq. (3.1) (including residuals transferred to the coarse mesh) are done with the target
discretization and any updates via distributed relaxation are done with the driver operator, which is first-
order upwind for convection. This is similar to the “double-discretization” approach of Brandt [3] in practice,
except that the target residual is evaluated on all of the meshes, including the finest mesh.

6. Numerical Discretization.

6.1. Spatial Discretization. The staggered-grid discretization used here, as shown in Fig. 6.1, is usual:
p defined at the cell-centers of the grid, u defined at the cell interfaces tangent to the y− or k−direction, and
v defined at the cell interfaces tangent to the x− or j−direction. Additional values of v and p are defined
at inflow and outflow boundaries in order to accommodate boundary conditions, defined subsequently. The
discrete scheme with such a staggered-grid arrangement of variables can be described as

Lhqh ≡




Qh
ν 0 ∂h

x

0 Qh
ν ∂h

y

∂h
x ∂h

y 0


qh = 0, (6.1)
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where ∂h
x and ∂h

y are generally distance-h central differences on the staggered grid. The operator Qh
ν is

composed of convection and diffusion elements, analagous to Eq. (2.3); the diffusion elements are treated
with central differencing,

(∂yyu)h
j,k =

1
(hy)j,k

[
uj,k+1 − uj,k

(hy)j,k+1/2
− uj,k − uj,k−1

(hy)j,k−1/2
], (6.2)

where hy denotes grid spacing in the y direction.
The discrete convection operator Qh is upwind-biased, of either the standard upwind differencing (SUD)

type or the narrow upwind differencing (NUD) type. The operator can be defined on a uniform grid in terms
of translation operators T±m

j and T±m
k , (T±m

j uj,k = uj±m,k). The SUD scheme can be defined as

Qh =
|u|
hx

D(T sgn(u)
j ) +

|v|
hy

D(T sgn(v)
k ) (6.3)

where hx is the grid spacing in the x direction, the sign function sgn is defined as

sgn(x) =




+1 if x > 0,

−1 if x < 0,

0 otherwise,

and D is defined as

D(z) ≡ c−2z
−2 + c−1z

−1 + c0 + c1z
+1.

The NUD scheme can be defined as below for |u|
hx
≥ |v|

hy
,

Qh = (
|u|
hx
− |v|

hy
)D(T sgn(u)

j ) +
|v|
hy

D(T sgn(v)
k T

sgn(u)
j ) (6.4)

and as below for |u|
hx

< |v|
hy

,

Qh =
|u|
hx

D(T sgn(u)
j T

sgn(v)
k ) + (

|v|
hy
− |u|

hx
)D(T sgn(v)

k ). (6.5)

For uniform meshes or meshes in which the stretching ratio is β = 1 + O(h), κ−schemes of at least second
order accuracy (SUD-2 and NUD-2) are defined for κ ∈ [−1, 1] as

{c−2, c−1, c0, c1} =
1

2 + 2β
{1− κ, 3κ− 5, 3(1− κ), 1 + κ}

and third-order accuracy (SUD-3) is attained for κ = 1/3 with uniform meshes or meshes in which the
stretching ratio is β = 1 + O(h2). On stretched grids, the reference meshsize, hi−1/2, appearing in (the
denominator of) the discrete one-dimensional convection operator, D(Ti)/hi−1/2, is a meshsize upstream of
the i-th node where the discrete operator is defined. The coefficients for the first-order upwind schemes
(SUD-1 and NUD-1) are

{c−2, c−1, c0, c1} = {0, −1, 1, 0}.
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Table 7.1

Errors in u with the FMG-1 cycle for entering flow using a second order accurate discretization of the continuity equation;

t=0.5.

Scheme h ||ed|| : u ||ea||/||ed|| : u

SUD-1 1/16 0.115556x100 0.019

SUD-1 1/32 0.664116x10−1 0.008

SUD-1 1/64 0.357011x10−1 0.006

SUD-1 1/128 0.185119x10−1 0.002

NUD-1 1/16 0.476075x10−1 0.007

NUD-1 1/32 0.246260x10−1 0.008

NUD-1 1/64 0.125445x10−1 0.006

NUD-1 1/128 0.633386x10−2 0.003

SUD-2 1/16 0.689001x10−2 0.024

SUD-2 1/32 0.154126x10−2 0.039

SUD-2 1/64 0.368421x10−3 0.034

SUD-2 1/128 0.905679x10−4 0.026

NUD-2 1/16 0.251242x10−2 0.128

NUD-2 1/32 0.637956x10−3 0.046

NUD-2 1/64 0.159458x10−3 0.046

NUD-2 1/128 0.397594x10−4 0.047

Table 7.2

Errors in u and v for entering flow with a fourth order accurate discretization of the continuity equation; t=0.5.

Scheme h ||ed|| : u ||ed|| : v

SUD-3 1/32 0.325327x10−3 0.182866x10−3

SUD-3 1/64 0.425745x10−4 0.231228x10−4

SUD-3 1/128 0.547187x10−5 0.292787x10−5

NUD-2 1/32 0.121481x10−3 0.591146x10−4

NUD-2 1/64 0.151229x10−4 0.724727x10−5

NUD-2 1/128 0.186856x10−5 0.885510x10−6

6.2. Gauss-Seidel Line Relaxation. The equations for δw are relaxed with a line-y Gauss-Seidel
algorithm marching from the inflow to the outflow boundary. The correction equations for δw are solved
implicitly because of the highly stretched mesh used for the viscous calculations. Since the thin-layer ap-
proximation is made for the viscous terms, the convective operator is first-order upwind, and there is no
streamwise reversed flow, the δw1 and δw2 correction (driver) equations of Eq. (4.6), corresponding to the
linearized momentum equations at given pressure, are solved exactly. The line-y solutions require only in-
versions of tridiagonal (rather than block-tridiagonal) matrices, since the equations for δw form a lower
triangular set except near the boundaries. The treatment at boundaries requires special consideration as
discussed subsequently. Note that for the NUD schemes in inviscid flow with |u|

hx
< |v|

hy
, the tridiagonal

equations for δw1 and δw2 reduce to diagonal equations.

8



Cycles

E
rr

or
s

12 13 14 15 16 17 18 19 20 21 22 23 2410-6

10-5

10-4

10-3

10-2

10-1

100

101

Algebraic/Discretization
Residual

65x65 grid33x33 grid 129x129 grid

(a) Second order accurate solution.

Cycles

E
rr

or
s

12 13 14 15 16 17 18 19 20 21 22 23 2410-5

10-4

10-3

10-2

10-1

100

101

102

Algebraic/Discretization
Residual

65x65 grid33x33 grid 129x129 grid

(b) Third order accurate solution.

Fig. 7.1. Maximum residual and algebraic-to-discretization errors in u versus multigrid cycle for the three finest grids

with the NUD-2 scheme.

7. Entering Flow Simulation. The flow field upstream of an external aerodynamic simulation is
basically inviscid. Brandt and Yavneh[5] considered multigrid solutions of such flows and showed the accuracy
of the coarse grid correction to be critically dependent on the alignment of the flow relative to the mesh. Their
numerical results indicated the necessity of W-cycles to converge the algebraic errors below discretization
errors in the FMG-1 cycle. We revisit these simulations below with slightly different boundary conditions
and show that the FMG-1 cycle with the use of FV-cycles is sufficient. The computations were done for
a square domain with periodicity in the y−direction on a uniform mesh. Inflow boundary conditions were
specified velocities as
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u(0, y) = 1 + 0.5cos(2πy),

v(0, y) = tu(0, y), (7.1)

with constant pressure at the outflow boundary. The tangent of the angle of the flow relative to the grid
is t = 0.5, corresponding to the maximum value studied by Brandt and Yavneh[5]. The exact solution
corresponds to convection along a streamline at constant pressure,

u(x, y) = 1 + 0.5cos(2π(y − tx)),

v(x, y) = tu(x, y). (7.2)

The boundary conditions for the correction equations are implemented by applying the distributed
relaxation equations δq = Mδw at the boundary along with a Dirichlet condition for (δw)3 at inflow. The
resulting discrete boundary conditions at x = 0 are

δw2 = 0,

δw3 = 0,

δw1 = ∂h
x(δw3). (7.3)

This boundary condition is the discrete equivalent to the original problem statement for the constant coef-
ficient problem. This boundary condition couples the δw1 and δw3 equations together at the line of cells
adjacent to the inflow boundary, necessitating a block 2x2 block matrix solution procedure; away from this
first line, the equations retain the triangular form of Eq. (4.6) and can be solved as scalar equations. The
downstream boundary condition is implemented by solving for δw3 at the last interior column of cells simul-
taneously with δw3 at the outflow column, again necessitating a 2x2 block matrix tridiagonal solution. After
sweeping through the domain, all of the momentum equation residuals are zero in the constant coefficient
case; this local block matrix coupling at either boundary eliminates the need for the extra sweep of the
residual equation advocated by Brandt and Yavneh[5]. The residuals remain non-zero in the general case
because of subprincipal terms and are restricted to the coarse grids. Enforcing periodicity in the y−direction
in the tridiagonal solver eliminates the need to consider any special boundary conditions in that direction.
Special forms for the spatial discretization of the convective operator in Eq. (6.1) at inflow and outflow are
given in Appendix IV.

The L2−norms of the discretization errors in u after complete convergence and the ratios of the L2−norm
of the algebraic errors divided by the L2−norm of the discretization errors after one cycle are shown in
Table 7.1 for various grid sizes and orders of accuracy. The algebraic errors are reduced substantially below
the discretization errors in one cycle. The error norms indicate a first order accuracy for SUD-1 and NUD-1,
and second order for SUD-2 and NUD-2, as expected.

At this flow angle, t = 0.5, the NUD-2 scheme exhibits third-order accuracy for the linearized convection
problem but does not for the full Euler equations because second order accurate discretizations are used for
the continuity equation, for the pressure terms in the momentum equation, and for the reconstruction of
the flow at an interface. To remedy this, these discretizations were improved to fourth order accuracy; the
corresponding results shown in Table 7.2 for both the SUD-3 and NUD-2 schemes now exhibit third-order
accuracy in u and v.
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Fig. 8.1. Grid used for the wake and finite flat plate simulation.

Table 8.1

Computed values of centerline velocity at x = 1.5 for the wake simulation; SUD-2 scheme; κ = 0; wd = 0.5; Re = 10, 000.

u u ||ea||/||ed|| : u

NxxNy (FMG-10) (FMG-1) (FMG-1)

49 x 25 0.730529 0.730585 0.00445

97 x 49 0.740382 0.740412 0.01135

193 x 97 0.742367 0.742385 0.02672

The reduction of the maximum residual and the algebraic-to-discretization errors over 4 cycles for the
three finest grids in the calculation are shown in Fig. 7.1 for the NUD-2 scheme with second and fourth order
accurate discretizations of the continuity equation. For second order accuracy, the residual and algebraic-
to-discretization errors are reduced four orders of magnitude over the 4 cycles, close to the theoretical limit
expected for elliptic equations of (0.5)3 = 0.125 reduction per FV(2,1) cycle. The convergence for the third
order accurate results deteriorate somewhat to three orders of magnitude over the four cycles but is still
quite reasonable considering that defect correction with a first-order driver operator is being used. Further
improvements could be made by additional sweeps or by a predictor-corrector sequence of the momentum
equations only, since the deficiency resides with the first-order accuracy in the driver operator for convection.

8. Wake Flow Simulation. The wake and the finite flat plate simulation to follow were computed for
the computational domain shown in Fig. 8.1 at a Re=10,000 based on the height of the channel. The grid
was stretched in the y−direction with a stretching factor on a specified mesh defined as

β0 = (hy)j,k+1/(hy)j,k

corresponding to (Ny)0 grid points in the vertical direction. The stretching ratio on all other meshes is

β = β
((Ny)0−1)/(Ny−1)
0 .

Freestream pressure is specified at the outflow boundary; a wake deficit was prescribed at the inflow boundary,
x = 0, according to
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(b) Algebraic-to-discretization errors in mass flow.

Fig. 8.2. Wake simulation convergence using the FMG-5 cycle; wd = 0.5; SUD-2 scheme; κ = 0.

u(0, y) = 1− wd exp(
−Rey2

4
), v(0, y) = 0,

where wd = 0.5. The mass flow is defined as the integral of velocity at constant x; the exact value is
0.9911377307. The boundary condition treatments at inflow and outflow are the same as those for the
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[((Ny)0-1) /((Ny)-1)]2

c f

0 5 10 150.008

0.0085

0.009

0.0095

0.01
(Ny)0=97

β0=1.04

β0=1.03

Fig. 9.1. Convergence of the Cf values at x = 1.5 with nominal grid spacing for two stretching ratios; SUD-2 scheme;

κ = 0; Re = 10, 000.

entering flow discussed previously. Symmetry conditions are applied at y = 0 for both q and δw. A
tangency condition, v = 0, was applied at y = 1; applying the distribution operator at this point with
simple reflection for u across the boundary indicates that a Neumann condition can be applied to δw3 at
the boundary, as shown in Appendix II, along with reflection for δw1 and a Dirichlet condition for δw2, if
needed.

The finest grid considered was NxxNy = 193x97 with β0 = 1.03 corresponding to (Ny)0 = 97. In
addition to residuals, the centerline velocity (obtained by second-order extrapolation) and the mass flow
were monitored at x = 1.5, a location midway in the domain, as a measure of spatial convergence. The
reductions of the maximum residual and the algebraic-discretization errors in mass flow for all the grids in
an FMG-5 process are shown in Fig. 8.2 using the SUD-2 scheme. For each of the meshes, the residual is
reduced 4-5 orders of magnitude and the algebraic errors are reduced far below discretization errors. The
centerline velocities for the three finest grids, Table 8.1, demonstrate second order accuracy with algebraic
errors reduced below discretization errors using the FMG-1 cycle. The reference centerline velocity was
obtained by second order Richardson extrapolation.

Although not shown, parameter variations in wd were made which indicated the results were not sensitive
to wd over the range investigated, 0 to 0.9. This is in contrast to an earlier application,[10] in which the
ghost variable equations were solved with a correction scheme (CS) multigrid. Those results deteriorated for
high values of wd, emphasizing the advantage of applying the FAS multigrid scheme to the whole nonlinear
system of equations. For linear equations, the performance of FAS multigrid is the same as CS multigrid .

9. Flat Plate Boundary Layer Simulation. For the flat plate simulation, no-slip conditions are
prescribed from x = 1 to x = 2 along the lower boundary and symmetry conditions upstream and downstream
of those points; a wake profile develops downstream of the trailing edge, x = 2. The inflow and outflow
conditions are prescribed freestream velocities (u∞ = 1, v∞ = 0) and pressures, respectively. The discrete
velocities adjacent to the plate for y < 0 are required to satisfy the no-slip condition at the plate, i.e.
u(x,−hy/2) = −u(x, hy/2); v(x,−hy) = −v(x, hy). The distributive relaxation equations applied at the
boundary are shown in Appendix III.
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Table 9.1

Computed values of total drag for the finite flat plate simulation; SUD-2 scheme; κ = 0; Re = 10, 000; β0 = 1.03.

CD CD ||ea||/||ed|| : CD

NxxNy (FMG-10) (FMG-1) (FMG-1)

49 x 25 0.011552 0.011753 0.0784

97 x 49 0.013492 0.013412 0.1284

193 x 97 0.013961 0.014051 0.5760

x-(x)leading edge

1-
p

/(
p)

x=
3

-1 0 1 2

-0.1

-0.05

0

0.05

0.1
193 x 97
97 x 49

Fig. 9.2. Pressures (y = 0) for the finite flate plate; Re = 10, 000.

The spatial convergence of the local skin friction Cf midway down the plate versus the nominal grid
spacing for two families of meshes for two stretching ratios is shown in Fig. 9.1, where

Cf = 2ν(∂h
y u)/u2

∞.

The two finest grids in each family are 289x145 and 193x97. Second order accuracy is evident; the results
with higher stretching ratio are slightly more accurate on coarser grids. The results converge to a value
approximately five percent higher than the Blasius value, Cf = 0.664/

√
Rex̄ = 0.00939, where x̄ denotes

distance from the leading edge, because of the presence of a favorable pressure gradient (accelerating flow)
over most of the plate, as shown in Fig. 9.2. Convergence of the L2−norm of the residual and estimated
algebraic-to-discretization errors in total drag CD are shown in Fig. 9.3. The total drag is defined as

CD = 2C∗
f (x∗ − 1) +

∫ 2

x∗
Cfdx,

where the Cf behavior ahead of x∗ = 1.25 is assumed to be an inverse square root behavior in distance from
the leading edge, as occurs with the Blasius solution. The infinite-grid result is extrapolated using the two
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Fig. 9.3. Errors per cycle using the FMG-5 cycle; β0 = 1.03; SUD-2 scheme;κ = 0; Re = 10, 000.

finest grids. Both the residual and algebraic-to-discretization errors are reduced nearly four orders of mag-
nitude over five cycles for the four finest grids, close to the convergence expected for elliptic equations. The
CD values on the three finest meshes are given in Table 9.1, confirming that the algebraic-to-discretization
errors are reduced below unity in a single cycle. The values extrapolate to a slightly larger value than the
Blasius value, CD = 1.338/

√
Re = 0.013280. Velocities normalized to the boundary layer edge velocity, ue,

versus the scaled normal coordinate, η, are shown in Fig. 9.4 for the two finest grids in one family; either
computation is indistinguishable from the Falkner-Skan boundary layer analytic result that accounts for
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η, scaled y coordinate

u/
(u

) e

0 2 4 6 80

0.2

0.4

0.6

0.8

1

Falkner-Skan
97x49 Grid
193x97 Grid

Fig. 9.4. Scaled velocity profiles for the finite plate at x = 1.5; Re = 10, 000; η = (y/x̄)
p

Rex̄/2.

streamwise pressure gradient.

The largest discretization errors as well as the largest residuals occur near the leading edge singularity,
as can be noted in Fig. 9.2. Although not tried, a local refinement near this boundary would be beneficial.

10. Concluding Remarks. A multigrid method for solving the incompressible Navier-Stokes equa-
tions has been applied to a classical model problem of fluid dynamics: flow past a finite flat plate at high
Reynolds number. Elements of the Full Approximation Scheme multigrid algorithm, including distributed
relaxation, defect correction, and boundary treatment, have been presented in some detail for the three main
physical aspects encountered in the simulation: entering flow, wake flow, and boundary layer flow. Textbook
efficiencies, i.e., reduction of algebraic errors below discretization errors in one multigrid cycle, and residual
reduction rates approaching the value expected for elliptic equations of nearly one order of magnitude per
cycle, are attained for second order accurate simulations at a laminar Reynolds number of 10,000.
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Appendix A. Linearized Euler Equations.
The linearized Euler equations,

L∞( q ) = 0, (A.1)

with periodicity in the y−direction over a finite domain, 0 ≤ x ≤ L, are considered, where q represents a
perturbation from freestream values. The convection operator is assumed to be constant as

Q0 ≡ ∂x + t∂y, (A.2)

where t ≡ v∞/u∞ represents the incidence of the freestream flow with the x−axis. The boundary conditions
are taken as prescribed velocity components at inflow and pressure at outflow,

(
u

v
)x=0 = (

u0

v0

)eiωy,

( p )x=L = ( pL )eiωy . (A.3)

Brandt and Yavneh[5] considered entering flow (L→∞) with inclusion of the first differential approximations
of the discrete equations to confirm algebraic convergence below discretization error in one FMG cycle,
neglecting boundary effects. Here, we consider only the differential solution using distributed relaxation,
q = M∞w, and include boundary effects. Considering w of the form

w =




a

b

c


 e−αxeiωy, (A.4)

then L∞M∞w = 0 implies



−α + iωt 0 0

0 −α + iωt 0
−α iω −α2 + ω2






a

b

c


 = 0. (A.5)
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A non-trivial solution (zero determinant) exists for values of α as below,

α ⊂ {iωt, iωt, ω,−ω}. (A.6)

Thus, the general solution, w ≡ w̄eiωy, can be written as

w̄ = B1




0
1
−i

ω(1+t2)


 e−iωtx + B2




1
0
it

ω(1+t2)


 e−iωtx

+ B3




0
0
1


 e−ωx + B4




0
0
1


 eωx, (A.7)

which requires four boundary conditions to close the system, instead of the three required with the prim-
itive equations. Applying a Dirichlet condition for w3 at inflow supplemented with the original boundary
conditions, as below,




w1 − ∂x(w3)
w2

w3




x=0

=




u0

v0

0


 eiωy,

( Q0w3 )x=L = ( pL )eiωy, (A.8)

the coefficients B1 −B4 can be determined and are given below:

B1 = v0,

B2 = u0 +
1

D1

[
(tu0 − v0)iD2 + 2pLe−ωL

]
,

B3 =
1

ωD1(t + i)
[
(tu0 − v0)− ipLe−ωL

]
,

B4 =
1

ωD1(t− i)
[−(tu0 − v0)e−2ωL − ipLe−ωL

]
, (A.9)

where D1 ≡ 1+ e−2ωL and D2 ≡ 1− e−2ωL. Note that w2 is a function of v0 only; w1 is primarily a function
of u0 but is coupled to v0 and pL through the boundary conditions, Eq. (A.8); the coupling is rather weak,
however, as it disappears completely for v0 = tu0, as is usually the case, and L→∞.

The primitive variables, q ≡ q̄eiωy, can be determined from q = M∞w, as below,

q̄ =
A1

1 + t2




1
t

0


 e−iωtx +

A2

D1




−i
t+i
−1
t+i

1


 e−ωx

+
A3

D1




i
t−i
−1
t−i

1


 eωx, (A.10)
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A1 = u0 + tv0 +
D2

D1
[i(tu0 − v0) + 2pLe−ωL],

A2 = +i(tu0 − v0) + pLe−ωL,

A3 = −i(tu0 − v0)e−2ωL + pLe−ωL, (A.11)

It can be verified that the solution above satisfies (A.1) and the boundary conditions (A.3). The boundary
conditions for w discussed in the main body of the text are discrete forms of the differential boundary
conditions given by (A.8) above. For the linearized, constant coefficient case considered here, both the
discrete and differential forms share the property that a solution to the distributed relaxation equations
with boundary conditions (A.8) satisfy identically the differential equations (A.1) with boundary conditions
(A.3).

Appendix B. Tangency.

The linearized Euler equations, Eq. (A.1), are again considered but with t = 0 (Q0 ≡ ∂x) and with
periodicity in the x−direction over a finite domain, 0 ≤ y ≤ H . Linearized tangency boundary conditions
are prescribed as v at the top and bottom of the channel,

(
v(x, 0)
v(x, H)

)
=

(
v0

vH

)
eiωx. (B.1)

Considering w of the form

w =




a

b

c


 e−αyeiωx, (B.2)

then L∞M∞w = 0 implies




iω 0 0
0 iω 0
iω −α −α2 + ω2






a

b

c


 = 0. (B.3)

A non-trivial solution (zero determinant) exists for values of α ⊂ {ω,−ω}.
Thus, the general solution, w ≡ w̄eiωx, can be written as

w̄ = B1




0
0
1


 eωy + B2




0
0
1


 e−ωy, (B.4)

which only requires two boundary conditions, consistent with the primitive equations; no boundary conditions
can be given for w1 and w2. Applying a Neumann condition for w3, as below,

(
(−∂y(w3))(x, 0)
(−∂y(w3))(x, H)

)
=

(
v0

vH

)
eiωx, (B.5)
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Fig. C.1. Schematic of variables near no-slip boundary.

the coefficients B1 and B2 can be determined and are given below:

B1 =
−e−ωH

ωD

[
vH − v0e

−ωH
]
,

B2 =
1

ωD

[
v0 − vHe−ωH

]
, (B.6)

where D ≡ 1 + e−2ωH .
The primitive variables, q ≡ q̄eiωx, can be determined from q = M∞w, as below,

q̄ = B1



−iω

−ω

iω


 eωy + B1



−iω

ω

iω


 e−ωy. (B.7)

It can be verified that the solution above satisfies (A.1) and the boundary conditions (B.1), recovering the
classical aerodynamic model problem for the flow past a wavy wall. It is clear that w3 takes the role of the
perturbation potential; the Neumann boundary conditions for w3 are implemented discretely at the tangency
surfaces in the main body of the text.

Appendix C. No-Slip Boundary.
The no-slip boundary conditions along the plate in terms of the ghost variables are

[δw2](xc, 0) = [∂h
y (δw3)](xc, 0), (C.1)

[δw1](xg , 0) = [∂h
x (δw3)](xg , 0), (C.2)

where xc denotes the x position of the cell-center for cell (j, k) and xg = xc + h
2 , as in Fig. C.1. Since a

third boundary condition for the ghost variables is required at the plate, we choose to split Eq. (C.1) into
two separate equations as
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[δw2](xc, 0) = 0, (C.3)

[∂h
y (δw3)](xc, 0) = 0. (C.4)

At the location (xg, 0), δw1 and δw3 can be approximated in terms of nearby values as

[δw1](xg, 0) =
1
2
(δw1)j,2 +

1
2
(δw1)j,1, (C.5)

[∂h
x (δw3)](xg , 0) =

1
2h

[(δw3)j+1,2 − (δw3)j,2 (C.6)

+ (δw3)j+1,1 − (δw3)j,1],

In relaxing the jth column, we assume that (δw3)j+1,k = 0. From Eq. (C.4), we also have (δw3)j,1 = (δw3)j,2.
Then Eq. (C.2) can be written as

(δw1)j,1 = −(δw1)j,2 − 2
h

(δw3)j,2, (C.7)

which is an implicit boundary condition equation to be implemented in relaxing Eq. (4.6) at the wall.
Now assume the convection-diffusion operator is constant, defined with a computational stencil as below,

Qν ≡




cN

cW c0 cE

cS


 . (C.8)

In a lexicographic pointwise relaxation, the matrix to solve for the (δw)j,2 values is as below,




c0 0 0
0 c0 − cS −2cSh−1

h−1 h−1 3h−2






δw2

δw1

δw3




j,2

=−




r2

r1

r3




j,2

. (C.9)

This system couples the implicit equations for δw1 and δw3 at the cell adjacent to the no-slip boundary,
necessitating a local 2x2 block matrix solution. After solving for (δw)j,2 (and thereby (δw3)j,1 and (δw1)j,1)
and changing the primitive variables through Mδw, it can be shown that the updated residuals of cell (j, k)
are zero. For variable coefficients in the convection-diffusion operator, the residuals differ from zero, as they
do in the interior of the mesh.

Considering relaxation of the entire column of cells, the implicit equations for the cells away from the
boundary remain in lower triangular form. Thus, the equations can be solved using an LU decomposition
with only a small overhead. In this instance, the entire column of residuals are zeroed out for a constant
coefficient convection-diffusion operator.

Appendix D. Boundary Stencil Modifications.

The four-point upwind-biased stencil considered here requires special treatment near boundaries. For
prescribed velocity boundary conditions at inflow, a modification is required at j = 2 for the x−momentum
equation and at j = 2 and j = 3 for the y−momentum equation. For prescribed pressure at outflow, a
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modification is required at j = Nx for both momentum equations. The simplest approach to maintain
second order accuracy, used herein for the wake and boundary layer simulations, is to use a first-order two-
point stencil for these points near inflow and a fully-upwind stencil (κ = −1) near outflow. For the entering
flow simulation, more accurate stencils were used at inflow as shown below; u1,k and v3/2,k represent given
boundary values at x = 0, as in Fig. 6.1.

Considering the x−momentum equation, for the SUD-2 scheme, the required term ux is computed using
nearby points and the gradient at x = 0, i.e.,

(∂h
xu)|h,y =

1
4h

[−5u1,k + 4u2,k + u3,k]

− 1
2
(∂h

xu)|0,y, (D.1)

where (h, y) denotes the vertical interface midpoint of the (2, k) cell and (∂h
xu)|0,y = −(∂h

y v)|0,y is given at
inflow from continuity, as

(∂h
y v)|0,y =

1
24h

[27v3/2,k − 27v3/2,k−1

− v3/2,k+1 + v3/2,k−2]. (D.2)

For the NUD-2 scheme, central differencing (κ = +1) is used.
Considering the y−momentum equation with either scheme, central differencing is used at the j = 2

column of cells and a third-order 4-point formula at the j = 3 column of cells, i.e.,

(∂h
xv)|h/2,y =

1
3h

[−4v3/2,k + 3v2,k + v3,k], (D.3)

(∂h
xv)|3h/2,y =

1
30h

[16v3/2,k − 45v2,k

+ 20v3,k + 9v4,k], (D.4)

where (h/2, y) and (3h/2, y) denote the horizontal interface midpoints of the (2, k) and (3, k) cells, respec-
tively.
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